

ALUMINIUM NITRIDE THIN FILMS SURFACE SMOOTHING BY ARGON CLUSTER IONS

N.G. Korobeishchikov¹, <u>Ivan V. Nikolaev</u>¹, M.A. Roenko¹, P.V. Geydt², V.I. Strunin³

e-mail: i.nikolaev@nsu.ru

¹ Department of Applied Physics, Novosibirsk State University, Novosibisk, Russia,

² Analytical and Technological Research Center, Novosibirsk State University, Novosibisk, Russia,

³ Dostoevsky Omsk State University, Omsk, Russia

Complex nonlinear effects:

- local high density of energy deposition (local temperature up to 10⁵ K, pressure up to 10 Mbar) in the subsurface layer, less than 20 nm deep;
- lateral sputtering leading to surface smoothing;
- the energy per atom in a cluster can reach values <10 eV, which is comparable with the binding energy of atoms on the target surface, what leading to minimal damage to the subsurface material structure; this energy is unattainable in monomer ion beams.

Material processing:

- surface smoothing and etching with low damage;
- the formation of self-organizing nanostructures;
- subsurface implantation;
- deposition of thin films.
- Material surface diagnostics: secondary ion mass spectrometry using cluster ions (GCIB-SIMS).

Department of Applied Physics, NSU

Main tasks and problems:

- Formation of a neutral cluster beam with the required cluster size and maximum intensity
- Highly efficient electron beam ionization of neutral clusters with minimal fragmentation
- Acceleration and focusing of cluster ion beam
- Separation of oligomer and monomers ions and and transport of cluster ions to the target
- Formation of cluster ion beam with defined parameters (mean size, energy per atom in cluster)

Department of Applied Physics, NSU

expansion chamber

sample chamber

ionizer chamber

post-skimmer chamber

turbomolecular pumps 2600×2 | 1600 | 2200 1/s [9000 1/s]

Experiment parameters:

Working gas: Argon

Cluster energy: 5-23.5 keV

Mean cluster size: 180-1000 atoms/cluster

Treatment mode	Mean cluster size N, atoms/cluster	Cluster ions energy E, keV	Energy per atom E/N, eV/atom	Ion fluence, ions/cm ²
1 (high-energy)	210	22	105	8.1×10^{15}
2 (low-energy)	1000	10	10	2.2×10^{16}

$$Y = \frac{N_{OUI}}{N_{IN}}$$

 $Y = rac{N_{OUT}}{N_{IN}}$ where N_{OUT} – the total number of sputtered target atoms during cluster bombardment Ar⁺; N_{IN} – the total number of Ar + cluster ions during the exposure;

Previously, in [1], we have shown that, at the normal incident angle of clusters, the GCIB sputtering process is determined by the energy per atom in the cluster E/N. Thus, as well as for oblique angles of incidence [2,3], the sputtering yields Y can be described as a universal nonlinear equation Y/N $\frac{Y}{N} = \frac{(E/(AN))^q}{1 + (E/(AN))^{q-1}}$ vs. E/N for clusters incident at a normal angle.

$$\frac{\mathbf{Y}}{\mathbf{N}} = \frac{\left(E/(AN)\right)^q}{1 + \left(E/(AN)\right)^{q-1}}$$

$$\frac{\mathbf{Y}}{\mathbf{N}} = \mathbf{E}\mathbf{A} \left[\mathbf{1} + \mathbf{e}\mathbf{r}\mathbf{f} \left(\frac{\mathbf{E} - \mathbf{U}}{\mathbf{s}} \right) \right]^{[3]}$$
where N – mean cluster size,

atoms;

E – kinetic cluster energy, eV;

A, q, U, s – constants for specific materials.

- [1] N.G. Korobeishchikov et al. Applied Physics A 124 (2018) 833
- [2] M.P. Seah. J. Phys. Chem. C 117 (2013) 12622
- [3] P.J. Cumpson et al. J. Appl. Phys. 114 (2013) 124313
- [4] K Sumie et al. Nucl. Instr. Meth. Phys. Res. B 307 (2013) 290

AFM images of AlN thin film surface at scan sizes 10×10 μm²: initial and after cluster ions treatment.

AFM images of AlN thin film surface at scan sizes $2\times2~\mu\text{m}^2$: initial and after cluster ions treatment.

To comparing the effectiveness of various treatment modes, it should be noted that the sputtering depth was 90 and 30 nm for modes 1 and 2, respectively.

Treatment mode	RMS roughness R_q , nm	Maximum roughness R_t , nm		
Scan size 2×2 μm ²				
initial	29.2	169		
after mode 1	9.9	61		
after mode 2	4.9	35		
Scan size 10×10 μm ²				
initial	35.0	222		
after mode 1	16.8	107		
after mode 2	11.3	78		
Scan size 40×40 μm ²				
initial	26.4	176		
after mode 1	14.3	97		
after mode 2	11.1	74		
Scan size 100×100 μm ²				
initial	21.3	144		
after mode 1	12.3	92		
after mode 2	9.5	63		

•

- The surface treatment of a polycrystalline AlN thin film with argon cluster ions was performed in various experimental modes. The possibility of effective smoothing of a nanostructured AlN surface with a minimum depth of the sputtering layer and minimal damage to the subsurface structure of the processed material is proved.
- It was shown that, after treatment mode 2, the root—mean—square roughness decreased in 2.2–6 times (depending on the scan size).
- The highest efficient smoothing with very small sputtering depth (tens nm) is obtained in the low–energy treatment modes (few eV/atom), which is caused by active lateral displacement of subsurface target atoms.

Thank you for your attention!