

Electron accelerator based on ionelectron emission for generation of a wide-aperture beam

S.Yu. Doroshkevich; M.S. Vorobyov; N.N. Koval; S.A. Sulakshin;

A.A. Ekavyan; A.V. Chistyakov

E-mail: doroshkevich096@gmail.com

Tomsk-2020

Outline

- * Relevance;
- ❖ Goals;
- Secondary ion-electron emission;
- Design and operation principle;
- Current voltage characteristics;
- Conclusion;
- Plans for the future.

Relevance

Fig. 1- The electron accelerator "Duet" with plasma cathode

Fig. 2- The electron accelerator with thermionic cathode

Relevance

Application examples of electron accelerators with large cross section beams:

- Food radiation processing;
- Sterilization of medical products;
- Pumping gas lasers;
- Curing of polymer coatings;
- stetc.

Fig. 3- Impact of a low-energy beam on the material surface

The purpose of this research work

To determine the fundamental possibility of a wide-aperture electron accelerator based on secondary ion-electron emission with a plasma emitter in a pulse-periodic mode at an electron beam generation frequency of tens of kilohertz and its average power of a few kilowatts.

Secondary ion-electron emission

<u>Ion-electron emission</u> is electron emission from the surface of a solid when it is bombarded with ions.

Fig.4 – Dependence of γ (U) on the type of gas and substrate material a) aluminum substrate; b) He ion bombardment

Operation scheme

Fig. 5 — The operation scheme of an electron accelerator based on ion-electron emission

Design and parameters of the accelerator

Electron energy
Current in the accelerating gap
Beam dimension

up to 150 keV up to 100 mA 400x650 mm

- 1 Output foil window;
- 2 Anode grid;
- 3 Cathode;
- 4 Pumping out window;
- 5 Shield;
- 6 Vacuum chamber;
- 7 Insulators;

Current-voltage characteristics of an auxiliary discharge at continuous mode

Fig. 7– Current-voltage characteristics of an auxiliary hollow cathode glow discharge at different He pressures

Auxiliary pulse discharge

D = 80 % D = 40 %

Fig.8 – Oscillograms in the pulse-periodic mode (f = 5 kHz; $I_{av.total}$ = 50 mA): CH1- discharge voltage (140 V/div); CH3- discharge current (50 mA/div).

Current-voltage characteristics of an auxiliary discharge in continuous and pulsed mode

Fig. 9– Current-voltage characteristics of an auxiliary hollow cathode glow discharge at different modes

Dependences on accelerating voltage

Fig. 10 —Dependences of discharge voltage U_d , (a) and current in the accelerating gap I_0 (b) on accelerating voltage value U_0 for different discharge modes (D=100; 80; 40 %) f = 20 kHz; $I_{av.total} = 50 \text{ mA}$, p = 0.75 Pa

Conclusion

- The current-voltage characteristics of the auxiliary glow discharge are determined in both continuous and pulsed operation modes of the discharge power source.
- ❖ Was performed launch of an electron accelerator based on ion-electron emission with 400x650 mm² in section at pulse periodic mode with average power of a few kilowatts.

Plans for the future

Carry out research on control of the emission plasma boundary when operating in the pulse-frequency mode to determine a more efficient extraction of such an electron beam into the ambient atmosphere

Thank you

for your attention!

Postgraduate: Doroshkevich Sergey

E-mail: doroshkevich096@gmail.com