

EFFECT OF ULTRASONIC TREATMENT ON THE LUMINESCENT PROPERTIES OF CONVENTIONALLY SINTERED YAG: CE³⁺ CERAMICS

Damir Valiev, O. KHASANOV, E. DVILIS, S. STEPANOV, V. PAYGIN

Motivation

Z. Xia et al. *Chem. Soc. Rev.*, 46, (2017), 275 - 299 **George** et al. *Annu. Rev. Mater. Sci*, 43, (2013), 2.1-2.21

Scientific problem

EL spectra measured during stress at 200°C on one of the analyzed white LEDs

Disadvantages of inorganic phosphors placed

in a silicon compound:

- poor thermal stability of phosphors;
- low conversion efficiency of LED radiation;
- degradation of the luminescent characteristics of the compound over time

Micrograph of the emissive region of one of the analyzed samples, taken before and after stress

The advantages of ceramics:

- high mechanical strength;
- compactness;
- high thermal stability (from space cold to plasma temperatures in rocket engine nozzles);
- the ability to implement any form;
- ability to withstand high fluxes of ionizing radiation.

Research goals and objectives

Goal: synthesis and complex spectroscopic study of the luminescent ceramics characteristics based on presynthesized garnet phosphors using ultrasound assistance and different temperature modes

Objectives:

- 1. Synthesis of YAG ceramics doped with Ce³⁺ by uniaxial pressing with subsequent air atmosphere sintering using ultrasound assistance and different temperature modes;
- 2. Phase and structural studies, microscopic properties of YAG: Ce ceramics;
- 3. Complex fundamental spectroscopic investigations of YAG: Ce ceramics;
- 4. Estimation of luminous efficiency of degradation characteristics of sintering YAG ceramics;
- 5. Development of light source module based on sintering YAG: Ce ceramics.

YAG:REE ceramics preparation process

Experimental techniques

Automatic press «IP-500»

Uniaxial pressing method followed by sintering

h – 1.1 mm

D-8 mm

YAG:REE ceramic samples

Ultrasound-assisted pressing device: 1 –powder sample; 2 –die; 3 –punches; 4 – waveguide; 5 –magnetostrictive transducer.

SEM JSM-7500FA + EDS (JEOL)

X-ray diffractometer XRD-7000 (Shimadzu)

Spectrofluorimeter CaryEclipse

Spectrophotometers UV-1800 (Shimadzu); SF-256BIK (LOMO)

- molding on an automatic press «IP-500 AVTO» («ZIPO», Russia).
- mechanical processing with a grinding and polishing system EcoMet 300 Pro (Buehler, Germany) using diamond suspensions MetaDi (Buehler, Germany).

Grain diameter distributions for YAG:Ce ceramics with different annealing temperature and UT. XRD patterns of YAG: Ce ceramics with and without UT different annealing temperature. SEM microstructure of YAG: Ce ceramics prepares with and without UT for 1650°C annealing temperature

PL spectra (a) of YAG: Ce ceramics excited by blue LED chip (λ_{ex} =447 nm).

Luminescence decay kinetics (b) for YAG: Ce ceramics excited by blue LED chip (λ_{ex} =452 nm).

The dependences of the reflection coefficient and energy efficiency on the sintering treatment for YAG: Ce ceramics. The PL intensity for YAG:Ce ceramics at maximum luminescence with and without UT as function of temperature.

Calculating values of the backscattering cross section and scattering pattern using Mie theory

White emitter design layout

Layout of white light emitter based on YAG:Ce ceramics

Comparison of the spectral characteristics of the YAG sintered ceramics with commercial phosphors

Summary

- Luminescent ceramics based on yttrium aluminum garnet were obtained by uniaxial pressing using ultrasound assistance and different temperature modes;
- A comprehensive characterization of the microstructure, phase composition of consolidated YAG:Ce ceramics was carried out;
- The degradation characteristics of ceramics have been studied: in the range of 0 150 °C, the change in radiation intensity is insignificant, at temperatures of 150 500 °C, a sharp decrease in intensity is observed.
- Developed prototypes of luminescent ceramics with a relative density of 99.78% with an energy conversion efficiency of up to 42%, which exceeds commercial analogs based on inorganic phosphors placed in a silicon compound (for comparison, common industrial phosphors with a similar luminescence spectrum SDL-4000 have an energy efficiency of less than 39%)
- A layout of the design of a ceramic emitter of white light based on luminescent ceramics has been developed.

Acknowledgments

A mechanical mixture of REE oxide and aluminum oxide powders were provided by the Chongqing University of Science and Arts, Chongqing, China (**Pof. Han Tao**).

I express my gratitude to the scientific group implementing the research project:

O. L. Khasanov, V. D. Paigin, S. A. Stepanov, E. S. Dvilis, V.A. Vaganov.